Ground states of a Bose-Einstein Condensate in a one-dimensional laser-assisted optical lattice
نویسندگان
چکیده
We study the ground-state behavior of a Bose-Einstein Condensate (BEC) in a Raman-laser-assisted one-dimensional (1D) optical lattice potential forming a multilayer system. We find that, such system can be described by an effective model with spin-orbit coupling (SOC) of pseudospin (N-1)/2, where N is the number of layers. Due to the intricate interplay between atomic interactions, SOC and laser-assisted tunnelings, the ground-state phase diagrams generally consist of three phases-a stripe, a plane wave and a normal phase with zero-momentum, touching at a quantum tricritical point. More important, even though the single-particle states only minimize at zero-momentum for odd N, the many-body ground states may still develop finite momenta. The underlying mechanisms are elucidated. Our results provide an alternative way to realize an effective spin-orbit coupling of Bose gas with the Raman-laser-assisted optical lattice, and would also be beneficial to the studies on SOC effects in spinor Bose systems with large spin.
منابع مشابه
Pinning of vortices in a Bose-Einstein condensate by an optical lattice.
We consider the ground state of vortices in a Bose-Einstein condensate. We show that turning on a weak optical periodic potential leads to a transition from the triangular Abrikosov vortex lattice to phases where the vortices are pinned by the optical potential. We discuss the phase diagram of the system for a two-dimensional optical periodic potential with one vortex per optical lattice cell. ...
متن کاملLocalization of two-component Bose-Einstein condensates in optical lattices.
We study nonlinear localization of a two-component Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our theory shows that spin-dependent optical lattices can be used to effectively manipulate the nonlinear interactions between the BEC components, and to observe composite localized states of a BEC in both bands and gaps of the matter-wave spectrum.
متن کاملSuperfluid properties of a Bose-Einstein condensate in an optical lattice confined in a cavity
We study the effect of a one dimensional optical lattice in a cavity field with quantum properties on the superfluid dynamics of a Bose-Einstein condensate(BEC). In the cavity the influence of atomic backaction and the external driving pump become important and modify the optical potential. Due to the coupling between the condensate wavefunction and the cavity modes, the cavity light field deve...
متن کاملFano blockade by a bose-einstein condensate in an optical lattice.
We study the transport of atoms across a localized Bose-Einstein condensate in a one-dimensional optical lattice. For atoms scattering off the condensate, we predict total reflection as well as full transmission for certain parameter values on the basis of an exactly solvable model. The findings of analytical and numerical calculations are interpreted by a tunable Fano-like resonance and may le...
متن کاملEfficiently computing vortex lattices in fast rotating Bose-Einstein condensates
We propose an efficient and spectrally accurate numerical method for computing vortex lattice structures in fast rotating Bose-Einstein condensates (BECs) with strongly repulsive interactions. The key ingredients of the method is to discretize the normalized gradient flow under rotational frame by Fourier spectral method in space and by backward Euler method in time. Different vortex lattice st...
متن کامل